Photo-evaporative Atmospheric Escape Across Parameter Space

PI: Eric Lopez (693).
Collaborator: Kevin France
(University of Colorado, Boulder)
Duration of Award:
FY18 (6m) – FY20

Main objectives

- * Develop new model of photo-evaporative atmospheric escape for highly-irradiated exoplanets using the radiative transfer code CLOUDY
- * Predict escape rates across exoplanet parameter space, especially for metal-rich atmospheres.
- * Provide pre-computed grids of escape rates to the community through EMAC
- * Examine the future detectability of exospheric metals with space-based UV transmission spectroscopy

GJ 436b Exosphere Transit in Lyα from HST

Initial Results in the first 6 months of study

CII S/N

per Transit

11

• Initial results for obtained assuming Parker Wind density profile for GJ 436b, with CLOUDY used to calculate ionization

• Transits then simulated in Lyα and CII at 133nm.

balance.

Metrics Delivered

- Estimated number of proposals not submitted to ROSES (1)
- New Collaborations with Kevin France (University of Colorado, Boulder) and Ruth Murray-Clay (University of California, Santa Cruz)
- Model outputs will provide key inputs for other ISFMs on atmospheric escape (including those lead by PI Airepetian and PI Lee)

Next Steps

- Further develop photo-evaporative escape models to be fully self consistent across parameter space then validate and publish.
- Provide a grid of pre-computed escape rates to other SEEC researchers working on escape and to the community via the Exoplanet Modeling Analysis Center EMAC.
- Use model outputs to examine the detectability of a wide range of atomic species in exoplanetary exospheres with UV transmission spectroscopy and make predictions for UV space telescopes including HST, HabEx, and LUVOIR.